If the coefficents of ${x^3}$ and ${x^4}$ in the expansion of  $\left( {1 + ax + b{x^2}} \right){\left( {1 - 2x} \right)^{18}}$ in powers of $x$ are both zero, then $ (a,b) $ is equal to 

  • [JEE MAIN 2014]
  • A

    ($14$,$\frac{{272}}{3}$)

  • B

    ($16$,$\frac{{272}}{3}$)

  • C

    ($16$,$\frac{{251}}{3}$)

  • D

    ($14$,$\frac{{251}}{3}$)

Similar Questions

If the third term in the binomial expansion of ${\left( {1 + {x^{{{\log }_2}\,x}}} \right)^5}$ equals $2560$, then a possible value of $x$ is

  • [JEE MAIN 2019]

Find the term independent of $x$ in the expansion of $\left(\sqrt[3]{x}+\frac{1}{2 \sqrt[3]{x}}\right)^{18}, x\,>\,0$

If $7^{th}$ term from beginning in the binomial expansion ${\left( {\frac{3}{{{{\left( {84} \right)}^{\frac{1}{3}}}}} + \sqrt 3 \ln \,x} \right)^9},\,x > 0$  is equal to $729$ , then possible value of $x$ is

Find the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$

The middle term in the expression of ${\left( {x - \frac{1}{x}} \right)^{18}}$ is